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Abstract

PixelCNNs are a class of powerful generative models that generate images pixel-
by-pixel by using tractable likelihood estimations. In this paper we propose a
novel PixelCNN variant called DensePixelCNN, which draws inspiration from
the Gated PixelCNN architecture as described by van den Oord et al. [14] and
the DenseNet architecture as described by Huang et al. [5]. DensePixelCNN
combines the pixel modeling approach of Gated PixelCNN with the feature map
reuse of DenseNet to efficiently learn the underlying distribution of natural images.
Adding these dense inter-layer connections allows our model to be more expressive
than a plain Gated PixelCNN while counterintuitively requiring significantly fewer
parameters to achieve equal performance. We experiment with this architecture by
comparing it to a vanilla implementation of Gated PixelCNN. In our experiments,
DensePixelCNN manages to obtain similar or better results to those obtained by
Gated PixelCNN, both in terms of the cross-entropy error and the subjective quality
of the generated samples, while using fewer parameters and converging faster than
the original Gated PixelCNN.

1 Introduction

Learning the distribution of natural images is currently a challenge that demands improvement. In
recent years, a significant amount of work has been done to explore more complex approaches for
learning this distribution. While models like Generative Adversarial Networks [2], Adversarial
Autoencoders [10], and Variational Autoencoders [7] have proven to generate realistic images even
under very complicated and diverse distributions, these models tend to have an intractable inference
step that make them unpractical in several circumstances [11]. Furthermore, even though these
previous models are able to generate samples from the learned distribution, they are not capable of
explicitly computing the likelihood of a given image. Ideally, we would prefer a method that could
not only generate random images that belong to the manifold of real images, but also discriminate
between real and unlikely images by explicitly computing the likelihood of an image. These two
complications are the main motivation behind the architectures proposed by van der Oor et al. in [11]
and [14].

The PixelCNN and PixelRNN architectures attempt to learn the distribution of real images by learning
instead many conditional probability distributions that could be used to obtain the likelihood of
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an image. To achieve this, these architectures, like the work done in [13], model the conditional
distribution of a pixel given the values of the previous pixels. For both of these architectures, we
model the conditional distribution of an arbitrary pixel, given the previous pixels, through a deep
neural network whose last layer is a softmax layer that returns the probabilities of all 256 possible
values that the pixel could take for a given channel. More generally, given a N ×N × c image where
c is the number of channels, our model will return a N ×N × c× 256 tensor with the conditional
distributions of each pixel (i, j) and every channel k ∈ {1, 2, ..., c}. Note that this architecture then
models the conditional distributions as a discrete multinomial distribution where we assume that
every pixel can only have one of 256 values.

The difference between PixelCNN and PixelRNN is clear from their names. While the architecture in
PixelRNN approaches this modeling through a series of LSTM layers [4] before the softmax layer,
the architecture in PixelCNN takes a computationally cheaper approach of learning these distributions
through a series of convolutional layers [8] before reaching the last layer [11]. Even though PixelRNN
outperforms PixelCNN, in this paper we will focus on a variant the latter due to its simplicity and
tractability. More specifically, we will focus on the Gated PixelCNN variant that was introduced in
[14].

The main contributions of this paper can be summarized as follows:

• We describe a novel architecture called DensePixelCNN which outperforms Gated PixelCNN
in terms of both the quality of the generated images and the cross-entropy error on the test
images.

• We provide and discuss further evidence that densely connected networks tend to outperform
their not-densely-connected counterparts while using significantly fewer parameters.

We will now introduce the Gated PixelCNN architecture, and its conditional form [14], together with
a brief discussion of DenseNet [5]. Following this, we will describe DensePixelCNN together with
the results of our experiments using this architecture.

1.1 Gated PixelCNN

As mentioned above, the PixelCNN architecture attempts to learn the distribution of natural images
p(x) by modeling this distribution as a product of several conditional distributions. More explicitly,
given a n× n image x we will rewrite the probability distribution p(x) as

p(x) =
n2∏
i=1

p(xi | x1, x2, ..., xi−1) (1)

Where xi is the ith pixel of image x in raster scan order starting on the top-left corner: we read each
row left-to-right first starting on the top row going towards the bottom row. Intuitively, we want to
estimate the conditional probability of pixel xi given the values of all the pixels "above and to the
left" of pixel xi. The original PixelCNN attempts to simulate this conditioning by using a stack of
masked convolutions. This process, however, unavoidably generates a "blind spot" in the receptive
field of the pixel that does not allow the network to truly use every pixel before the target pixel as we
would want [11]. This is the main motivation for the modifications introduced in the Gated PixelCNN
variant.

The first significant difference between the original PixelCNN and the Gated PixelCNN architecture
is that the Gated PixelCNN modifies the convolutional layers so that they become multiplicative units
(similar to those in LSTM) in order to add expressiveness. In order words, if the convolutional layer k
outputs y =Wk ∗ x in the original PixelCNN architecture (where Wk are some learnable parameters),
the Gated PixelCNN will output the following value:

y = tanh(Wk,f ∗ x) � σ(Wk,g ∗ x) (2)

Where Wk,f and Wk,g are the parameters we want to learn and � indicates entry-wise multiplication.

A second big modification is that Gated PixelCNN has two convolution stacks, one "vertical" stack
and one "horizontal" stack. The purpose of having these two stacks is to eliminate the blind spot
in the receptive field caused by the masked convolutions in the original PixelCNN. The unmasked
vertical stack permits the conditioning on all the rows above the current pixel while the masked
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horizontal stack handles the conditioning of our result on the current row. Under this scheme, every
layer in the horizontal stack will take as an input the output of the previous horizontal layer and the
output of the vertical stack. On the other hand, every layer in the vertical stack will only take as an
input the output of the previous layer. This is done so that no information from pixels following our
target pixel is leaked into the computation of the conditional probability using these two stacks.

1.2 Conditional Gated PixelCNN

Given some latent encoding vector h of an image x, one can modify the gated PixelCNN architecture
so that it models the distribution p(x | h) [11]. For this, we change the output of the gated convolutions
layers described by [14] to take in account the latent encoding as a bias term at every layer. Therefore,
in this case the activation of the kth convolutional gated layer is given by

y = tanh(Wk,f ∗ x + V T
k,fh) � σ(Wk,g ∗ x + V T

k,gh) (3)

Where Vk,f , Vk,g , Wk,f and Wk,g are the parameters we want to learn.

Note that in this case the latent encoding must be a description of the content of the image as a
whole rather that a description that indicates something about an specific pixel. An example of this
conditioning would be to use a one-hot encoding for the class of an image. This would then simply
add a class-dependent bias on each layer. While there is a way to modify this activation so that it
takes latent encodings that are location-dependent, for the purposes of our experiments we will only
use class-dependent latent encodings.

1.3 DenseNet

DenseNet was introduced by Huang et al. as an alternative architecture that circumvents the vanishing
gradient problem that is so frequent among very deep neural networks [5]. Several architectures have
previously been proposed in order to facilitate the training of very deep networks. Some of these
architectures include Residual Networks [3], Highway Networks [12], and stochastic depth networks
[6]. Similarly to what those architectures do, DenseNet allows the training of deep networks by
facilitating the pass of information between a layer and the layers that follow. In this case, DenseNet
does this through a combination of "dense blocks": block of layers where the input of one layer
will be concatenated to the inputs of all subsequent layers within the same block. By doing this,
DenseNet reduces the amount of information that could get lost when a feature map is fed into a layer
in a feed-forward manner. This modification has allowed DenseNet to become the state-of-the-art
architecture for image classification on ImageNet while the number of parameters used remains very
small compared to other architectures that perform similarly.

2 Densely Connected PixelCNN

In this paper we propose a novel architecture called DensePixelCNN that combines DenseNet’s
densely connected blocks with the conditional approach taken by Gated PixelCNN in order to
model the distribution of natural images by computing the conditional probabilities as in [11]. For
this, we form a network where in each layer, similarly to gated PixelCNN, there is both a gated
"horizontal" convolutional unit and a gated "vertical" convolutional unit that act like the ones used
in Gated PixelCNN. The main difference is that now we divide our network into one or more
densely connected blocks where, for any layer Li of a densely connected block with l layers in total,
we concatenate the input of the horizontal convolutional unit of Li to the input of the horizontal
convolutional units of layers Li+1, Li+2, ..., Ll. Similarly, we concatenate the input of the vertical
convolutional unit of Li to the vertical convolutional units of all the subsequent layers. Furthermore,
in order to facilitate the reuse of information in the network, we add a "residual connection" between
the input image and the beginning of each dense block. This means that every layer has the input
image as an input feature map, rather than just the layers in the first dense block.

The architecture of a single layer in a dense block is summarized in Figure 1. Furthermore, the
high-level architecture of DensePixelCNN can be seen in Figure 2. Note that, differently from
DenseNet, between any two densely connected blocks we simply pass the output of one densely
connected block as an input to the following densely connected block without any intermediate
pooling layers.
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Figure 1: Diagram of the architecture of one layer of a densely connected block in DensePixelCNN.
Yellow circles represent non-linearities, green boxes represent convolutions, the pink circle with the
two lines represent feature maps concatenation, the pink circle with an "X" represents entry-wise
multiplication, and the blue diamond represents a split of the feature maps into two equally sized sets.

Figure 2: Diagram of the high-level architecture of DensePixelCNN. Blue diamond represents the
partition of the image into two copies of itself, the green boxes represent gated units in the horizontal
stack, and the orange boxes represent gated units in the vertical stack. Converging arrows represent
concatenations.

The architecture described above works similarly to Gated PixelCNN in the sense that it takes as an
input a N ×N × c image and it returns a N ×N × c × 256 tensor that represent the conditional
probabilities of all pixels in all channels.

3 Experimentation

3.1 Setup

For our experiments we compare our architectures with a vanilla implementation of the Gated
PixelCNN architecture as proposed by [14]. We train both models on the MNIST hand written
digit dataset [9] and compare their convergence times, cross-entropy loss on the training data, and
the quality of the generated images during intermediate training steps. We implement the Gated
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PixelCNN architecture in TensorFlow [1] by modifying the Anan Gupta’s implementation2 to follow
the implementation described in [14] more closely. From there, we implemented DensePixelCNN by
modifying our existing implementation so that feature maps are passed between layers as explained
above. In our experiments we try different number of dense blocks, layers, and feature map in
order to compare the sensitivity of our algorithm with respect to these hyper-parameters. Our full
implementation can be found in our github repository3.

3.2 Quantitative Results

In order to quantitatively determine the benefits of DensePixelCNN over the original Gated PixelCNN
architecture, we compare results of each model over varying number of parameters. Specifically, we
test three parameter settings, low, medium, and high, in order to compare how effectively the two
models reuse parameters at different scales. We utilize the training loss and 95% confidence intervals
for the test loss as comparison metrics. In 1, we see that for high parameter settings, DensePixelCNN
performs on par with the original Gated PixelCNN as their test loss confidence intervals overlap.
However, comparing the models in the low setting, consisting of around 110k parameters, reveals a
lower training and test loss for the Densely connected variant. Additionally, the confidence interval
for the test loss of DensePixelCNN is lower than that of the original Gated PixelCNN model. This
means that in cases where the number of parameters is heavily constrained, DensePixelCNN is able to
better utilize the parameters it has available to generate a probabilistic model with lower cross-entropy
loss.

model params no. layers no. blocks no.
feature
maps

train loss test loss

Gated PixelCNN ∼ 110k 10 N/A 20 0.1111 0.1073± 0.0008
DensePixelCNN ∼ 110k 9 3 8 0.1104 0.1042± 0.0008
Gated PixelCNN ∼ 300k 28 N/A 20 0.0995 0.0992± 0.0008
DensePixelCNN ∼ 300k 15 5 12 0.0995 0.1004± 0.0008
Gated PixelCNN ∼ 500k 18 N/A 32 0.0995 0.0992± 0.0008
DensePixelCNN ∼ 500k 15 5 12 0.0992 0.1005± 0.0008

Table 1: Cross-entropy loss on MNIST dataset. We vary the total number of layers, the number of
layers in each dense block, and the number of feature maps produced at each layer to ensure that the
number of parameters is comparable. We mark in bold entries whose confidence intervals do not
overlap with other entries in the parameter setting and which do better in terms of loss.

3.3 Qualitative Results

The advantages of Dense PixelCNN become most clear when working with a highly constrained
number of parameters. Both models were constrained to roughly ∼ 110k parameters and hand-tuned.
The below training snapshots in Figure 3 show the sampled images from Gated PixelCNN and Dense
PixelCNN at 5, 10 and 20 epochs, respectively. It is clear to see that DensePixelCNN produces more
convincing generated images than Gated PixelCNN, when both are given the same tight parameter
and training constraints. This supports the idea that feature reusability allows our model to be
less dependent on the correct behavior of all layers and thus makes it more reliable than the gated
PixelCNN architecture with the same number of training epochs and parameters.

4 Conclusions

Our work presented an improved Gated PixelCNN architecture, called DensePixelCNN. The underly-
ing assumptions and probabilistic model remain the same as in Gated PixelCNN. The inspiration
for the architectural changes comes from DenseNets. Applying these dense inter-layer connections
allowed for our model, DensePixelCNN, to achieve better performance than the original Gated Pixel-
CNN, but with fewer parameters and faster convergence. Alternatively, when equally size constrained,

2https://github.com/anantzoid/Conditional-PixelCNN-decoder
3https://github.com/mluop/DensePixelCNN
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Figure 3: Generated images after 5, 10 and 20 epochs respectively, with 110k parameters.

it provided better performance with the same number of training epochs. The applications which
can benefit from reducing parameter count include any device with limited memory attempting to
evaluate on the model, or situations in which faster training convergence is necessary. The main
contribution of this paper is to show that the advantages of dense inter-layer connections apply to
improving Gated PixelCNN.

As an extension of our work, it would be interesting to apply both the DensePixelCNN architecture
and the Gated PixelCNN architecture to the challenges of generating convincing CIFAR and ImageNet
images, especially in the limited-parameter regime. We did attempt to run these experiments ourselves,
but could not fit a sufficiently expressive model into memory. If one has resources equivalent to 60
hours of compute time on 32 GPUs as in [14], we highly recommend attempting this experiment.
We suspect that the improvements in convergence time, parameter efficiency, and test error achieved
by DensePixelCNN will become especially clear on these datasets, due to the complexity of their
images.
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